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NONDESTRUCTIVE EVALUATION USING A REDUCED ORDER COMPUTATIONAL 
METHODOLOGY* 

MICHELE L. JOYNER+, H. T. BANKS*, BUZZ WINCHESKI§, AND WILLIAM P. WINFREE' 

Abstract. This paper uses eddy current based techniques and reduced order modeling to explore the 

feasibility of detecting a subsurface damage in structures such as air foils and pipelines. To identify the 

geometry of a damage, an optimization algorithm is employed which requires solving the forward problem 

numerous times. To implement these methods in a practical setting, the forward algorithm must be solved 

with extremely fast and accurate solution methods. Therefore, our computational methods are based on 

the reduced order Karhunen-Loeve or Proper Orthogonal Decomposition (POD) techniques. For proof-of- 

concept, we implement the methodology on a 2-D problem and find the methods to be efficient and robust 

even with data containing 10% relative noise. Furthermore, the methods are fast; our findings suggest we 

can reduce the computational time on average by a factor of 3000. 
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1. Introduction and "Problem Formulation. In the field of nondestructive evaluation, new and 

improved techniques are constantly being sought to facilitate the detection of hidden corrosion and flaws in 

structures such as air foils and pipelines. Many electromagnetic techniques and instruments already exist to 
aid in the detection of hidden flaws and corrosion. Some of the devices and techniques in use today involve the 

magneto-optic/eddy current imager [11, 28] in conjunction with eddy current imaging [12,13], the self-nulling 

eddy current probe [31] along with conformal mapping techniques [32], and the SQUID (Superconducting 

Quantum Interference Device) through the use of either injected current methods or induced eddy current 
methods [7, 9, 15, 25, 27, 30]. We attempt to contribute to these techniques already in use by decreasing 

the computational time required to detect and explicitly characterize a damage in a material. In other 
words, given data obtained from a measuring device, we seek to locate and parameterize the damage while 

minimizing the amount of time required to complete this task. To this end, we formulate and develop an 
appropriate inverse problem approach and present computational methods along with numerical results to 

support the efficacy of our approach. 
The proposed computational approach is based on approximation ideas from the Karhunen-Loeve or 

Proper Orthogonal Decomposition (POD) reduced order methodology. Recently these techniques have been 

successfully used in reduced order methodologies for feedback control design [1, 2, 8, 17, 20] as well as open 
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loop control design [24].  Here we propose for the first time the use of such techniques in electromagnetic 

based damage detection problems. Initial findings reported below are most encouraging. 

The only other reference (to our knowledge) in which POD reduced order model techniques are used in 

conjunction with inverse problems is [29] in which the authors seek to reconstruct distributed conductivities 

from surface voltage measurements in the classical electrical impedence tomography problem. 

1.1. Description of Problem. Depending upon the application, different measuring devices and tech- 

niques are used in nondestructive evaluation. An advanced method of damage detection uses a device such 
as the SQUID or self-nulling probe as the sensor for eddy current methods. One way in which the eddy 

current method is implemented is by placing a thin conducting sheet carrying a uniform current above or 

below the sample. The current within the sheet induces a magnetic field perpendicular to it that in turn 

produces a current within the sample, called an eddy current. When a flaw is present within the sample, 

the flaw disrupts the eddy current flow near the flaw and this disturbance is manifested in the magnetic 

flux density detected by the measuring device. Using these measurements of the magnetic flux density, we 

attempt to reconstruct the geometry and location of the flaw explicitly. 

To test the feasibility of reconstructing the geometry of the damage, we consider a two-dimensional 

problem in which the damage (which we shall refer to as a "crack") is rectangular in shape. In the two- 

dimensional problem, we assume we have uniformity in the direction of the current flow in the conducting 
sheet which we label the z direction, denoting the width of the sample. The x direction denotes the length of 

the sample while the y direction denotes the thickness of the sample. To further simplify the test problem, 
we disregard the boundary effects of the materials in the x direction (sample length) by assuming an infinite 
sample and conducting sheet in that direction. If the conducting sheet and sample are not of infinite 

extent, we have to take into account the discontinuities in the current flow at the boundaries. Because we 
are considering materials of infinite extent, we will construct our forward problem by focusing on a small 

"window". We will center this "window" such that the left boundary of the "window", at location x = 0, 

is positioned in the center of the crack in the x direction, i.e., the crack is symmetric through the yz plane 
at x = 0. Therefore, at both the left and right boundaries of the "window" we assume evenly symmetric 
boundary conditions to account for the symmetry of the crack as well as the infinite extent of the sample 
and conducting sheet in the x direction. A schematic of the resulting two-dimensional problem is depicted 
in Fig. 1.1 where it is assumed that the sample (which is 20mm thick) is composed of aluminum and the 
conducting sheet (which is 0.1mm thick) is made up of copper and the crack is centered in the y direction 

around the center of the sample (i.e., around y — —10mm). 
Although certain simplifications are made in the two-dimensional case, the two-dimensional analysis is 

relevant to special three-dimensional cases. In a "true" three-dimensional case, the sample will be of finite 
length (finite in the x direction). However, if the crack is located "far enough" away from the boundaries 

of the sample in the x direction, we can assume the boundary effects are not sufficiently significant to effect 

the measurements taken by a SQUID (or similar device). Therefore, the infinite extent of the sample in the 

test problem will fairly accurately portray the finite sample in the three dimensional case. Similarly, in the 
two-dimensional test problem, we assume the sample along with the damage or crack to have an infinite 

width. However, in the three-dimensional case, the crack will have a finite width. To account for this, we 
assume that data will be taken by scanning along the length of the sample on a line fixed at a certain height 

using a SQUID. If the line upon which we are scanning is fixed in the z direction (along the width of the 
sample) so that the line is "far enough" away from the edges of the crack in the z direction (along the 
width of the crack), we should still be able to use the two-dimensional analysis to determine the feasibility 



FIG. 1.1. 2-D Schematic of Problem 

of identifying length, thickness and depth of the crack in the sample with SQUID data. 

1.2. The Use of Phasors. As mentioned in the previous section, a conducting sheet (copper in our 

example) carrying a uniform current is placed above the sample to induce eddy currents within the sample. 

Without loss of generality, we assume the source current has the form 

Js = Js cos (wt)k = Jsi?e(eiwt)k. 

This current produces a magnetic field H(x, y,t) described by Maxwell's equations. At the surface of the 

sample, the magnetic field has the same time dependence as the source current, 

H(x, y, t) = H(a:, y)cos{u>t). 

However, as the magnetic field penetrates into the sample, a phase lag results due to the finite conductivity 

of the sample (aluminum in our example). In other words, the magnetic field takes the form 

H(x,y,t) = H{x,y)cos{wt + 6(x,y)), 

where the term 6(x, y) takes into account the depth of penetration. Hence, H(x, y) is a vector field quantity 

which keeps track of the magnitude and direction of H at each point in space while 6(x, y) denotes the phase 

shift from the original cosine wave at the same point in space. Consequently, the quantities of interest are 

H(x,y) and 8(x,y). To keep track of these quantities, denoting the magnitude, direction, and phase lag, we 

can use vector phasors. 

A phasor [6, 26] is a complex quantity which completely defines the magnitude and phase shift for 

H(ar, y,t). Figure 1.2 illustrates how the magnitude and phase are defined through the complex number. 

The magnitude is represented by the radius of the circle, and the phase is the angle which the complex 

vector makes with the real axis. Thus, the vector phasor H and the explicit time dependent field H(x,y,t) 

are related in the following way 

(1.1) H(x,y,t) = Ae(H(x,y)0 = Im(R(x,y)e „ifwt+TT /2)) 
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FIG. 1.2. Illustration of Phaser Notation 

in which all of the phase information and direction is captured in the complex vector phasor H. For this 
reason, in the remainder of the paper we will assume no explicit time dependence in the fields examined, 

but instead consider the fields to be complex vector phasors, denoted H, B, etc, and account for the time 
dependence of the fields through phase shifts contained in the phasors. 

1.3. Formulation of Forward Problem. Maxwell's equations are the basis of the derivation in the 
forward problem. However, since we are expressing the various fields in terms of phasors which depend on 

space coordinates but not explicitly on time, we want to express time-dependent Maxwell's equations in 

terms of phasors. We first examine the explicit time-dependent Maxwell's equations. The usual system as 
derived from first principles (e.g., Coulomb's law, the Lorentz transformation and relativity theory - see [10]) 
is written eis 

(1.2) V • B = 0, 

(1.3) V   D 

(1.4) 

and 

(1.5) 

rr      ^ 9- VxE=--B, 

VxH = J + |-D. 
ot 

To examine the relationship between the explicit time-dependent Maxwell's equations and Maxwell's equa- 
tions in terms of phasors, we examine the relationship in equation (1.1). Based upon this relationship, the 
time derivative for H(x,y,t) (and similarly other fields) is given by 

(1.6) d^ 
jr-K(x,y,t) = u>Re(iH{x, y)eiut) = w7m(tH(x,y)ei(w(+,r/2>). 
dt 

Substituting the appropriate form of equations (1.1) and (1.6) into equations (1.2) - (1.5), we obtain the 
completely equivalent phasor form of Maxwell's equations 

(1.7) V • B = 0, 



(1.8) V-D = p, 

(1.9) VxE = -iwB, 

and 

(1.10) VxH = J + iwD. 

Thus equations (1.7) - (1.10) hold for our entire "window", denoted fi. 

We could further simplify equations (1.7) - (1.10) in the example under investigation by making some 

observations. First of all, since our system is considered to be electrically neutral, the internal electric charge 
density p equals zero. Secondly, by examining the conductivity a of aluminum and copper and by using 
Ohm's law 

J = CTE, 

we can argue J ss 107E. On the other hand, the constitutive law 

(1.11) D = eE, 

indicates D « 10_11E. We are using a frequency of 60Hz in our problem which yields an angular frequency 

of approximately 3 x 102rad/sec, and thus uD « 10~9E. Consequently, in the sample and conducting sheet 
J >> uD which implies we could assume uD « 0 in both the sample and conducting sheet in equation 

(1.10). In other words, the term wD on the right side of equation (1.10) is only significant in the air. Thus 
the form of Maxwell's equations we will use in the computations are given by 

(1.12) V-B = 0, 

(1.13) V-D = 0, 

(1.14) V x E = -twB, 

and 

(1.15) VxH = J + iwD 

where, as noted above, the term iu>D is only significant in the air. However, we shall retain this term in all 

of fi since ftiis is done in the commercial simulator (Ansoft) that we employ below. 

Based upon equation (1.12) and vector null identities, we can represent B as the curl of a vector 

potential A, B = V x A, where A is referred to as the magnetic vector potential. The forward problem will 

be formulated in terms of this magnetic vector potential from which we can derive both the magnetic field 
H and magnetic flux density B. Accordingly, we want to combine Maxwell's equations to obtain equations 
in conjunction with boundary conditions which completely determine the behavior of the magnetic vector 
potential A in H defined by 

fl = {(x, y, z) € R3 : 0mm < x < 50mm, —35mm <y< 35mm}. 

5   , 



Using the identity B = V x A in equation (1.14), we have 

V x E = -iw(V x A)   or   V x (E + iwA) = 0. 

Again if one uses vector null identities, the curl of E + iuA being zero implies E + itoA can be written as 

the gradient of a scalar potential, denoted by <f>. As a result, 

(1.16) E = -iojA - V(t>. 

Finally, we can use equations (1.15) and (1.16) in conjunction with Ohm's law, the constitutive law given 

by (1.11) and the constitutive law H = ^B, to obtain 

(1.17) V x (-V x A] = a(-iuA- V<j>) + iue{-iuA- V<f>)     Vx,y £ tt. 

In the above equality, the right side represents the total current density J which is made up of the source 

current density, eddy current density and displacement current density. The source current density Js is due 

to differences in electric potential; therefore, Js is represented by the term -aV(j>. The term -iuaA repre- 

sents the eddy current density, Je, produced due to a time-varying magnetic field. Finally, the displacement 

current density, Jd, due to time-varying electric fields is given by the term iwe(-iwA - V<f>). 

Since equation (1.17) contains two unknowns, A and <f>, we need an additional equation to uniquely 

determine solutions of the system. In the literature [6, pp. 327-328],[14, pp.219-221] a "gauge" is commonly 

chosen which allows one to uniquely determine both A and <f>. In time-varying problems a gauge satisfying 

the Lorentz condition 

(1.18) V-A + ^e-^=0, 

is most often imposed. However, based upon the geometry in our test problem, V ■ A can be seen to be 

zero. This follows since the only nonzero component of A is A3, the component of A in the z direction (the 

direction of the current density J). Therefore, V • A = ^ = 0 since we have uniformity in the z direction. 

Indeed, this is the Coulomb gauge [14, pp. 221-222] and with this we only need impose an initial condition 

or an equivalent integral constraint. For this we take the relationship 

(1.19) I = j   3 ■ nda = /   (a(-iuA - Vft) + iwe(-iwA - V(f>)) • nda 
Jcs J cs 

between the total current I flowing in the conducting sheet (cs) and the total current density J within 

the conducting sheet. This is the second equation used in the software package Ansoft Maxwell 2D Field 

Simulator which we use in our computational efforts. Therefore, we have two coupled equations (1.17) 

and (1.19) in which the magnetic vector potential A can be uniquely determined if appropriate boundary 

conditions on A are specified. We remark that the imposition of a gauge often decouples the equations for 

the potentials A and <j> [14, p.220-222]. In our case, the equations (1.17) and (1.19) remain coupled even in 

the presence of a Coulomb gauge. 

Recall, from Section 1.1 that we assume evenly symmetric x boundaries due to the symmetry of the 

crack and the infinite extent of the materials. In other words on the x boundaries, we assume the fields on 

both sides of the boundary, oscillate in the same direction. To account for the even symmetry, we assign 

Neumann boundary conditions to these boundaries. In a similar manner, we assume the y boundaries are 

"sufficiently far" away from the sample and scanning area to not effect the overall measurements. Indeed, 



as one moves farther away from the sample and conducting sheet, the magnetic vector potential A tends 

to zero. Therefore, on the y boundaries, we assign Dirichlet boundary conditions to indicate the boundary 

is "sufficiently far" away from the materials so that A « 0. Therefore, the magnetic vector potential A is 

determined according to 

V x [-VxAJ = <r(-iwA - V(f>) + iue{-iu)A - V<£)     Mx,y g 0. 

/=  /  J-ndo= /   (cr(-iwA - V</>) +iwe(-iwA- V<j>)) -nda 
Jcs J cs 

and 

with 

A(z,-35)    =   0   =   A(x,35) 

VA-111(0,3,)    =    0    =    VA-n|(50,y). 

2. Computational Method. Our goal here is to characterize the geometry of a hidden, i.e., subsurface, 

crack within a sample. To achieve this goal, we must develop fast and efficient forward computational 

methods to be used possibly numerous times in the inverse problem formulated below. To this end, we 

examine reduced order Karhunen-Loueve or Proper Orthogonal Decomposition (POD) techniques. 

The POD technique is an attractive order reduction method, because basis elements are formed which 

span a data set consisting of experimental or numerical simulations in an "optimal" way. Since the POD 

basis is formed such that each basis captures important aspects of the data set, only a small number of 

POD basis elements are needed in general to describe the solution [24]. Consequently, the POD method will 

enable us to formulate a fast forward algorithm which still describes the solution accurately with only a few 

basis elements. 

2.1. The POD Method. We summarize the use of the POD method in the context of the least squares 

inverse problem described in detail in the next section. For further details on the general POD method, we 

refer the reader to [2, 4, 5, 8, 16, 18, 19, 20, 21, 22, 23, 24] and the extensive list of references contained 

therein. The first step in forming the POD basis is to collect "snapshots" or solutions across time, space 

or a varied parameter. In our case, we let q be the vector parameter characterizing physical properties 

of the damage, for example, the length, thickness, depth, center, etc. of the damage. For an ensemble of 

damages {qj}^, we obtain corresponding solutions, {A(qJ-)}^1, of (1.17), for magnetic vector potentials 

which we call our "snapshots". Alternatively, from the solution set {A(qJ)}^1, we can obtain the magnetic 

fluxes {B(qj)}J^1 and instead use these as our "snapshots" if we wish to treat magnetic fluxes as our 

basic state variable. However, for our explanation, we will consider snapshots on A = (0,0, A3) and hence 

our explanation will be for the scalar case. For the vector case, we would simply proceed componentwise 

[2, 8, 24]. Without loss of generality, we will denote the vector A by its scalar nonzero component A, i.e., 

the A3 component of A. 

As explained in [24], we seek basis elements of the form 

(2.1) $i = Y/Vi(j)A(qj) 

where the coefficients Vi(j) are chosen such that each POD basis element $;, i - 1,2, ...,NS, maximizes 

-if^q^^n.c)!2 



subject to ($;, $i)L2(QjC) = ||$i||2 = 1- It is thus readily seen using standard arguments that the coefficients 

Vj(j) are found by solving the eigenvalue problem 

CV = W 

where the covariant matrix C is given by 

[C]ij = —(A{(a),A{^))LH^c). 

Since the matrix C is a Hermitian positive semi-definite matrix, it possesses a complete set of orthogonal 

eigenvectors with corresponding nonnegative real eigenvalues. We order the eigenvalues along with their 

corresponding eigenvectors such that the eigenvalues are in decreasing order, 

Ai > A2 > ... > AJV, > 0. 

We then normalize the eigenvectors corresponding to the rule 

y.. y. =   5ii 
1     3      N,\j 

Then the ith POD basis element is defined by (2.1) where Vi{j) represents the jth component of the ith 

eigenvector of C. It can also be shown that {^i}^ are orthonormal in L2(ft,C) and span{$i}£1 = 

span{^4(qJ)}^1. Indeed, given any A(qj), we have 

where 

a*(qj) = (^(qj),*fc)z,2(n,c)- 

We remark that if any of the Aj's are zero, say Xt = 0 for i - K+l,..., Ns, then even though the corresponding 

Vi are orthogonal (and of course linearly independent), we will have span{$j}f=l = span{^i}^v Hence in 

this case we will only generate K < Ns linearly independent POD basis elements. We refer the reader to a 

discussion of the relation between POD basis element formation and the popular singular value decomposition 

(SVD) methods in linear algebraic methods given in [20], for example. 

To determine the reduced number, N, of POD basis elements required to accurately portray the ensemble 

of "snapshots" {A(qj)}f:l1, we compute 

JV JV„ 

which represents the percentage of "energy" in span {.A (q,-)}^! that is captured in span{$j}f=1. The 

reduced basis consists of only the first N elements $j, i = 1,...,JV, where N is chosen according to the 

percentage "energy" desired. From these N POD basis elements, we obtain the approximation AN(qj) for 

A(qj) such that 

JV 

A(qj) « ^(qjO = £afc(qj)**. 



To approximate ^(q) where q is a given parameter not in the set {qj}^, we extend the approximation 

formula to obtain 

AT 

*=i 

where afc(q) is evaluated through interpolation methods. Various interpolation methods may be chosen to 

evaluate ak (q) such as linear interpolation, cubic interpolation, cubic spline interpolation or nearest neighbor 

interpolation. In the one-dimensional parameter case presented numerically in this paper, we use a Matlab 

interpolation function interpl in which the linear interpolation method is chosen. In other words, for q = q 

(the scalar case) 

ak(q) = ak{qj) + {ak(q.j+i) - ak(qj)) 
Qj+i ~ <lj 

where there exists j in {1,..., Ns - 1} such that qj < q < qj+i. 

Once we have the solution ^(q), we can recapture the explicit time dependence by referring to the 

formula (1.1) in Section 1.2,given by 

Ä(x,y,t)=Re(A(x,y)eiut). 

2.2. Inverse Problem. Using the methodology presented in the previous section for calculating the 

magnetic vector potential A given specific crack parameters, we shall try to identify these crack parameters. 

In identifying the geometry of a crack, we would like to estimate the length, thickness, center and depth of a 

crack within a sample. To determine the feasibility of this task and to illustrate the use of the reduced model 

methodology, we first try to estimate a single parameter, say length or thickness, while assuming the values 

of the other parameters are known quantities. If this can be successfully done, further efforts at estimating 

two or more parameters can be pursued in a similar manner. 

2.2.1. Least Squares Criterion. In our trial runs, we assume we have access to various types of data, 

such as the A field or the B field, in various points (xi,yi) of space, which we call the set $. We compare 

and contrast the accuracy to which we can estimate the given parameter or parameters based upon the field, 

i.e., A or B, to which we have access as well as what an appropriate choice of the points in \P should be. 

For example, we assume first that the unknown parameter set contains only values of the parameter 

lengths I. That is, we want to estimate only the length of the crack assuming the thickness, center, and depth 

are fixed quantities. Given an arbitrary length /, we can generate a solution AN(l), the computed solution 

AN as described in Section 2.1. We can compare the computed solution to the experimental or simulated 

data A(l*) for the exact parameter value I*. For the examples presented here, we choose the parameter 

values for equations (1.17) and (1.19) given in Table 2.1. However, for the system values given, the order 

of magnitude of A is 10~8^; therefore it is desirable to scale both the data and the computed solution to 

achieve a more accurate estimation. If the data is below the desired tolerance of the optimization routine 

used (the Matlab-based routine nelder in our case), the converged estimated value will be the initial guess. 

Therefore, in this case, we want to minimize the least squares criterion 

n     m 

(2.2) J(Z) = ^^|108^(o:i,^,0-108i(a;i,2yj,r)| 
i=l j=l 

over the set of all possible length values I where (xi,yj),i = l,...,n;j = l,...,m are points in the set *. 

The set *, in our trial runs, varies from a set of points uniformly discretizing all of fi to simply one line of 



TABLE 2.1 

Parameters Used in Equation (1.17) for Computational Results 

Parameter Value 

U) 2TT/ 

f 60Hz 

&al 3.72 x 107£ 
771 

&CU 5.80 x 107£ 

Oair   ■■■ 771 

i 1A 

sample points above the conducting sheet or one line below the sample with a grid spacing of 0.5mm in both 

the x and y direction. If we assume we have access to the values of A in all of fi, in other words, values in 

the conducting sheet and the sample as well the air above the conducting sheet, below the sample, and in 

between the sample and conducting sheet, the set <I> is thus given by 

* = {(xi,Vj) € tt\xi = (0.5i)mm,i = 0,...,100; 

Vi = (0.5j - 35)mm, j = 0,..., 140}. 

If instead we (more realistically) assume we only have access to values on a line 1mm above the conducting 

sheet, the set $ is given by 

* = {(m, V) € ti\xi = (0.5i)mm, i = 0,..., 100; y = 2mm} 

(the top of the conducting sheet is at y = 1mm). We can describe * similarly for other choices of data sets. 

In most experimental settings, we do not have access to measurements of the magnetic vector potential 

A, but instead to those of the magnetic flux density B. In this case, we first compute AN(l) for a given / in 

the manner described in Section 2.1. To find the computed magnetic flux density BN(l), we simply use the 

definition 

B"(i)=VxAJV(i). 

In general, it is not necessary to use the entire B field, but instead we can use only one component of the B 
field, either the x component, Bi, or the y component, B2- If we are using the x component of B, our least 

squares criterion would be 

(2.3) J(l) = ^^IIO8^^,^,/) - lO'&te.ife.m2; 
i=l j=l 

whereas, if we use the y component of the B field, the criterion would be 

n     m 

(2.4) J(l) = £X>08£2"(^-,0 - lQ8B2(Xi,yj,l*) 
t=i j=i 

where (x{,yö) £ $. We minimize one of the three criteria, (2.2), (2.3), and (2.4), along various sets * and 

determine which criterion allows us to most accurately determine the unknown parameter I while allowing 
for the limitations of the given set *. We can estimate other unknown parameters in a similar manner by 

replacing I by q in the above equations where q represents the entire set of unknown vector parameters. 
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2.2.2. Noise Generator. In the samples provided, simulated data was used to represent experimental 

data Ä, Bi, or 52, depending upon the specific trial run. To obtain the simulated data, we specified 

the parameters q* for a crack and generated the solution based upon these exact parameters using the 

commercial software Ansoft Maxwell 2D Field Simulator. Again, the goal is to recapture these parameters 

by minimizing one of the cost functions given above. However, when using actual experimental data, we 

most often have random error in the measurements taken. To simulate this random error, we add random 

noise to the simulated data to test our methodology in the presence of noise and to give a more reasonable 

demonstration of how our algorithm might perform on experimental data. 

To generate the noise, we use the Matlab function randn which generates a normally distributed set of 

random numbers with mean 0 and variance 1. A normally distributed set of random numbers has a 65% 

certainty of being within 1 standard deviation, 95% certainty of being within 2 standard deviations and 

99.7% certainty of being within 3 standard deviations of the mean. In other words, there is a 65% chance 

the Matlab function randn will return a number in the interval (-1,1), 95% chance of returning a number 

in the interval (-2,2) and a 99.7% chance of producing a number in the interval (-3,3). Therefore, we can 

control the amount of noise in the simulated data by scaling the certainty intervals. 

For example, assume we have generated the solution Ä(q*) given exact parameters q*. Furthermore, 

assume we desire to be 95% certain that the noise generated to be added to this solution is within 1% of the 

actual data Ä(q*). At this level of noise, we want to scale the interval (-2,2) to (-0.01,0.01). Therefore, 

letting 

ei = 0.005 * randn, 

the data, Ä, is given by 

I(q') = i(q*)(l + ei). 

Similarly, if we instead want to be 99.7% certain of noise within 1% of the simulated data, we scale the 

interval (-3,3) to (-0.01,0.01) or let 

e2 = 0.0033 * randn. 

As previously, the data at this noise level is given by 

i(q*) = i(q*)(l + e2). 

In the trials we performed, we simulated corrupted experimental data by generating noise at a 1% relative 

noise level with both 95% certainty and 99.7% certainty as discussed above as well as noise at a 5% and 10% 

relative noise level with both 95% certainty and 99.7% certainty. 

2.3. Results with Test Examples. In determining the geometry of the crack in our simulations, we 

focus first on determining the length of the damage and then separately the thickness of the damage. Various 

trials are performed in each case. In a specific trial run, ten different data sets (exact data with ten different 

sets of added random noise) are used where the relative noise is chosen either at a 10%, 5%, or 1% noise 

level with a confidence level of either 95% (2 standard deviations) or 99.7% (3 standard deviations). Details 

of each trial run can be found in [3]. A summary of the results will be given in this section. 
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2.3.1. Determining the Length of the Damage. The first step in determining the length of the 

damage is to generate an ensemble of damages with various crack lengths {lj}j=i to be used in forming the 

POD basis. In generating the damages for the examples reported on here, we used crack lengths varying from 

Omm to 4mm in increments of 0.2mm while keeping the thickness of the crack fixed at 2mm (Ns = 21). We 

then used the commercial software Ansoft Maxwell 2D Field Simulator to generate the snapshots {A^j)}^. 

Based upon the calculations discussed in Section 2.1, 99.99% of the energy of the system was captured with 

a single basis element. Table 2.2 gives the amount of energy captured when using N basis elements up to 

TV = 10. 

TABLE 2.2 

Energy Captured with N Basis Elements using Snapshots of A on Length 

N Energy Captured 

1 0.99999469355655 

2 0.99999998707290 

3 0.99999999918539 

4 0.99999999978293 

5 0.99999999987493 

6 0.99999999990451 

7 0.99999999992129 

8 0.99999999993439 

9 0.99999999994409 

10 0.99999999995308 

To test the inverse methodology, we first try to identify the length of the damage, I* = 1.3mm, by using 

the criterion given in expression (2.2). We ran the inverse problem using 1,2,3,4 and 5 reduced POD basis 

elements with data containing no noise taken over the entire discretized region SI. There was no noticeable 

difference between using 4 and 5 basis elements; hence we chose to use 4 POD basis elements in our solution 

approximation. 

Based upon the results ([3, Appendix A.l]), we can conclude that under the assumption that we have 

access to the magnetic vector potential A in all of Si, we did a good job of estimating the crack length even 

when the data contained 5% relative noise. When no noise is added, we obtained an estimated length of 

1.2999mm. At the 99.7% confidence level with 5% random relative noise, we obtain an average length, I, of 

1.3160mm with variance 0.0019mm2. (Here and in all results given below, the reported results involve the 

length or thickness estimates averaged over 10 trial runs.) In actuality, however, we only have access to data 

in the regions of air above the conducting sheet or below the sample. Therefore, the inverse problem was 

next carried out using "data" in just these regions. The results ([3, Appendices A.2 & A.7]) illustrate that 

we still do a reasonable job estimating the crack length. For example, assuming we have access to data in the 

air above the conducting sheet, we obtain an average length of I = 1.2504mm with a variance of 0.0094mm2 

when 5% relative noise is added at the 99.7% confidence level. With no noise added, the estimated length is 

1.2997mm. 

Although technically it is possible to have access to data in the entire region of air, typically data is 

taken on only one or two lines above the conducting sheet or below the sample. When running the inverse 

problem on just a few lines above the conducting sheet or below the sample, the inverse algorithm did not 

perform well, especially for data containing noise at the 5% level.   The results ([3, Appendices A.3-A.6, 
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A.8-A.11]) indicate that if there is a considerable amount of noise (5% noise level in our case), it is not 

feasible to accurately estimate the crack length using the magnetic vector potential A. For example, if we 

have access to data on just one line above the conducting sheet, we obtain a good estimate of 1.3008mm 

when no noise is added; however, when 5% relative noise is added at the 99.7% confidence level, the average 

estimated length is 1.3873mm with a variance of 0.7655mm2. When adding only 1% relative noise at the 

99.7% confidence level, we obtain an average estimated length of 1.2804mm with a variance of 0.0272mm2. 

Although we obtain better results at a smaller noise level, the results are not as accurate as one would like 

and the method would be unacceptable in practice. 

As we have already noted, in experimental situations one does not have access to the magnetic vector 

potential. Instead, one only has access to the magnetic flux density or the magnetic field. With this in mind, 

we repeated the computational tests reported in [3, Appendix A] with the exception of using the criteria 

given by expressions (2.3) and (2.4). Using Bx data or the criterion (2.3), the results ([3, Appendix B]) were 

no better than when we used the magnetic vector potential. Using data on one line above the conducting 

sheet, the average length obtained was 1.2223mm with a variance of 0.4715mm2 at the 5% noise level with 

99.7% confidence. On the other hand, when we used B2 data ([3, Appendix C]), criterion (2.4), the inverse 

problem produced remarkably accurate results; estimated lengths were accurate to an order of 10-3 even 

with 5% relative noise. However, the most notable observation in using B2 data is the low variation in 

results even at the 5% and 10% relative noise level. Using data on a single line above the conducting sheet 

with 10% relative noise at a 99.7% confidence level, an average estimated length of 1.2977mm was obtained 

with a variance of 0.3237 x 10_4mm2. Based upon these results, we could quite accurately estimate a given 

length of a crack even if the data contained a considerable amount of noise. Therefore, we concluded that 

even when scanning along a single line, when using the y component of the magnetic flux density, we can 

accurately recapture the length of a crack within a sample. Scanning along multiple lines or over the whole 

region provided only marginal improvements in the estimated length; the improvements were not sufficiently 

substantial to warrant the extra time or money required to obtain the extra data. 

The results above were produced using snapshots of the magnetic vector potential. We also took snap- 

shots (with which we formed POD basis elements) on the y component of the magnetic flux density, B2, and 

performed the analysis again using the criterion (2.4) ([3, Appendix D]). Although there was a quite notable 

difference in the energy captured in N basis elements (see Table 2.3), the inverse problems still exhibited 

the same consistency and accuracy as seen previously. One comparison we can make between using POD 

elements resulting from snapshots of A versus snapshots of B2 in the inverse problem is that when using the 

snapshots on A, the estimated length was normally an overestimate. Conversely, using the POD elements 

resulting from snapshots on B2 usually yielded an underestimate of the length. For example, when taking 

snapshots on A to generate the POD basis elements, we estimated an average length of 1.3014mm with vari- 

ance 0.9653 x 10_5mm2 in the inverse problem when using data on a single line above the conducting sheet 

with 5% relative noise. On the other hand, if we again use data on a single line above the conducting sheet 

with 5% relative noise added, we estimate an average length of 1.2999mm with variance 0.1017 x 10~4mm2 

when the POD basis elements are generated with B2 data. Despite this fact, there seems to be no other 

apparent difference in using the snapshots on A to generate the basis elements as opposed to using the 

snapshots on B2 to generate the basis elements, as long as one uses the criterion (2.4) in the inverse problem 

calculations. 

2.3.2. Determining the Thickness of the Damage. Proceeding as we did in estimating the length 

of a damage, we generated an ensemble of crack thicknesses (with crack length fixed at 2mm) ranging from 
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TABLE 2.3 

Energy Captured with N Basis Elements using Snapshots of B2 on Length 

N Energy Captured 

1 0.95752844126957 

2 0.98938760682215 

3 0.99515414870549 

4 0.99680555604825 

5 0.99749219883487 

6 0.99789119249012 

7 0.99822617546932 

8 0.99853187498393 

9 0.99871258779223 

10 0.99888757131260 

0mm to 4mm in increments of 0.2mm, {hj}f=1 with associated solutions {A{hj)}?Ll. Similar to our findings 

when taking snapshots on the length of a damage, 99.99% of the energy was captured in a single basis element 

(see Table 2.4). 

TABLE 2.4 
Energy Captured with N Basis Elements using Snapshots of A on Thickness 

N Energy Captured 

1 0.99999446453503 

2 0.99999999666469 

3 0.9999999993584 

4 0.99999999961479 

5 0.99999999972048 

6 0.99999999980054 

7 0.99999999984470 

8 0.99999999987779 

9 0.99999999990521 

10 0.99999999992316 

Based upon the results on characterizing the length of the damage, we only considered snapshots of 

the magnetic vector potential A with B2 data in the inverse problem. When estimating the length of the 

damage in the previous section, only 4 basis elements were required to achieve an estimate with an accuracy 

of order 10_3mm. However; even though 99% of the energy is captured in a single basis element regardless 

of whether we snapshot on A or B2 (Tables 2.4 and 2.5), more basis elements (at least 8) were required 

to achieve the same level of accuracy when estimating the thickness of the damage. Therefore, we used 9 

POD basis elements. Although more basis elements were used, the total time required to recapture the true 

thickness (1.3mm) of the crack was still only 8 seconds. Furthermore, the results ([3, Appendix E]) when 

using 9 POD basis elements were still accurate even in the presence of 10% noise. For example, an average 

thickness of 1.3041mm with variance 0.2883 x 10~4mm2 was estimated at the 10% relative noise level at a 

99.7% confidence level. Thus, just as in estimating the length of a crack, we can also recapture the thickness 
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TABLE 2.5 

Energy Captured with N Basis Elements using Snapshots of B2 on Thickness 

N Energy Captured 

1 0.99488023435913 

2 0.99728234129540 

3 0.99799825670140 

4 0.99836722535293 

5 0.99870058186819 

6 0.99896958827131 

7 0.99911070207772 

8 0.99923141472559 

9 0.99934263323537 

10 0.99944776176825 

of a crack quite accurately and efficiently. 

3. Conclusion. In this paper, we began by formulating a two-dimensional test problem to be used in 

locating and characterizing the geometry of a subsurface damage within a sample of material. This two- 

dimensional problem was argued to be a reasonable approximation to a typical three-dimensional problem 

under certain assumptions. We then explained the forward problem describing the behavior of the magnetic 

vector potential in this test problem and discussed computational methods to be used in solving the forward 

problem. In order to quickly and efficiently obtain results in the inverse problem, the computational methods 

for the forward problem must be fast and accurate. Therefore, we chose to use the reduced order POD 

technique in the forward problem, allowing us to use less than 10 basis elements in each of the examples 

tested to date. Consequently, we were able to provide a fast forward algorithm. Moreover, the POD basis 

elements were formed so that we captured at least 99% of the energy in these few basis elements, making 

the forward algorithm accurate as well as fast. 

We then outlined the implementation of the inverse problem and results. While the methods did not seem 

to be robust when using A data or B\ data in the inverse algorithm, the methods were robust, even in the 

presence of 10% relative noise, when using B2 data regardless of whether we snapshot on the magnetic vector 

potential or the magnetic flux density. Furthermore, performing multi-line scans or using full region data 

improve results only marginally over a single line scan and hence do not warrant the extra effort and time in 

collecting more extensive data sets. A significant finding regarding reduction in computational time can be 

summarized as follows. If one were to use a software package such as Ansoft's Maxwell 2D Field Simulator 

to calculate the forward problem each time it is required in the inverse problem, it would take approximately 

5-10 minutes for a single forward solve and hence any inverse algorithm based on this forward solver would 

require hours of time for the optimization problem. In using the reduced order POD methodology for the 

forward problem, the entire inverse problem takes approximately 8 seconds, less than ^ the time required 

for a single forward simulation using Ansoft. As a forward algorithm is called numerous times, this is a 

substantial reduction in time required. Most of the extensive computational time is required only in the 

initial collection of snapshots. Hence, all of these computations would take place prior to implementation 

in a practical setting. Therefore, using data collected on a single line above the conducting sheet or below 

the sample, we are able to estimate the length or thickness of a damage in a small amount of time.  This 
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suggests that a portable SQUID type sensing device, when coupled with reduced order modeling in the 

inverse problem, might be plausible in practical damage detection applications. 

The results summarized in this note suggest that use of the POD based approximation methods in 

electromagnetic eddy current technique inverse problems for damage is a viable approach. We are therefore 

continuing our efforts with'damages requiring more than one-dimensional parameterization. Our earlier 

findings in this direction are most encouraging. We are also exploring use of these techniques in geometries 

requiring 3D formulations. 
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